Implanted intracortical electrodes as chronic neural interfaces to the central nervous system

نویسنده

  • Peter Henderson
چکیده

Recent developments in neural interfaces show that it is possible to have fine control of a robotic prosthetic by interfacing with the motor cortex of the human brain. Development of long term systems for this purpose is a challenging task with many different possibilities. Intracortical implants have shown the most promise in providing enough signal selectivity and throughput for complex control systems with many degrees of freedom. Intracortical systems generally fall into two categories: MEMS devices and bundle of wire systems. While both show promise, MEMS systems have been greatly popularized due to their reproducibility. In particular, the Michigan probe and Utah microarray are often used as a base for construction of more complex intracortical systems. However, these systems still carry many downsides. Their long-term viability is questionable, with mixed results. The effects of damage from implantation are still inconclusive and immune responses remain a problem for long-term use. While there is some promising research in the use of bioactive molecules and biocompatible materials to prevent immune responses, more controlled study is needed before intracortical systems become widespread.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gelatine-embedded electrodes--a novel biocompatible vehicle allowing implantation of highly flexible microelectrodes.

Chronic neural interfaces that are both structurally and functionally stable inside the brain over years or decades hold great promise to become an invaluable clinical tool in the near future. A key flaw in the current electrode interfaces is that their recording capabilities deteriorate over time, possibly due to the lack of flexibility, which causes movements in relation to the neural tissue ...

متن کامل

The impact of chronic blood-brain barrier breach on intracortical electrode function.

Brain-computer interfaces (BCIs) have allowed control of prosthetic limbs in paralyzed patients. Unfortunately, the electrodes of the BCI that interface with the brain only function for a short period of time before the signal quality on these electrodes becomes substantially diminished. To truly realize the potential of BCIs, it is imperative to have electrodes that function chronically. In or...

متن کامل

Neural Interfaces for Intracortical Recording: Requirements, Fabrication Methods, and Characteristics

Implantable neural interfaces for central nervous system research have been designed with wire, polymer, or micromachining technologies over the past 70 years. Research on biocompatible materials, ideal probe shapes, and insertion methods has resulted in building more and more capable neural interfaces. Although the trend is promising, the long-term reliability of such devices has not yet met t...

متن کامل

The effect of longitudinal magnetic resonance imaging on the quality of neurophysiological recordings using implanted micro- wire electrodes

Introduction. Valuable insights can be gained by combining both invasive and non-invasive schemes for analyzing and activating the central nervous system.. For example, combining fMRI and intracortical recording has yielded important information about metabolic mechanisms that are highly correlated with recorded neural activity[1]. Similarly, combining fMRI with electrical microstimulation has ...

متن کامل

Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects

The emerging field of neuroprosthetics is focused on the development of new therapeutic interventions that will be able to restore some lost neural function by selective electrical stimulation or by harnessing activity recorded from populations of neurons. As more and more patients benefit from these approaches, the interest in neural interfaces has grown significantly and a new generation of p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015